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a b s t r a c t 

This article presents an innovative research methodology that enables the efficient classification of cardiac 

disorders (17 classes) based on ECG signal analysis and an evolutionary-neural system. 

From a social point of view, it is extremely important to prevent heart diseases, which are the most 

common cause of death worldwide. According to statistical data, 50 million people are at risk for car- 

diac diseases worldwide. The subject of ECG signal analysis is very popular. However, due to the great 

difficulty of the task undertaken, and high computational complexity of existing methods, there remains 

substantial work to perform. 

This research collected 10 0 0 fragments of ECG signals from the MIH-BIH Arrhythmia database for 

one lead, MLII, from 45 patients. An original methodology that consisted of the analysis of longer (10- 

s) fragments of the ECG signal was used (an average of 13 times less classifications). To enhance the 

characteristic features of the ECG signal, the spectral power density was estimated (using Welch’s method 

and a discrete Fourier transform). Genetic optimization of parameters and genetic selection of features 

were tested. Pre-processing, normalization, feature extraction and selection, cross-validation and machine 

learning algorithms (SVM, kNN, PNN, and RBFNN) were used. 

The best evolutionary-neural system, based on the SVM classifier, obtained a recognition sensitivity of 

17 myocardium dysfunctions at a level of 90.20% (98 errors per 10 0 0 classifications, accuracy = 98.85%, 

specificity = 99.39%, time for classification of one sample = 0.0023 [s]). Against the background of the 

current scientific literature, these results are some of the best results to date. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Diagnosing heart conditions by analyzing ECG signals has been

popular for many years and is the basic method used in the pre-

vention of cardiovascular diseases. The wide range of application

of ECG signal analysis is due to the fact that it is a simple and

non-invasive method that provides substantial valuable informa-

tion about the function of the circulatory system. 

The huge popularity of the ECG signal analysis is also reflected

in research. In recent years, the most developed topics related

to electrocardiography include: 1) ECG beat detection / classifica-

tion: ( Augustyniak, 2015; Martis, Acharya, & Adeli, 2014; Martis,

Acharya, & Min, 2013; Song, Cho, Kim, & Lee, 2015; Yochum, Re-

naud, & Jacquir, 2016 ), 2) deep learning: ( Acharya et al., 2017; Ki-

ranyaz, Ince, & Gabbouj, 2016; Rahhal et al., 2016 ), 3) principal

component analysis: ( Castells, Laguna, Sörnmo, Bollmann, & Roig,

2007; Ceylan & Ozbay, 2007; Chawla, 2009; Elhaj, Salim, Harris,
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wee, & Ahmed, 2016; Kallas, Francis, Honeine, Amoud, & Richard,

012; Kanaan et al., 2011; Kim, Shin, Shin, & Lee, 2009; Mar-

is, Acharya, Lim, & Suri, 2013; Martis, Acharya, Mandana, Ray, &

hakraborty, 2012; Martis, Acharya, & Min, 2013; Polat & Gunes,

007; Rodriguez, Mexicano, Bila, Cervantes, & Ponce, 2015; Wang,

hiang, Hsu, & Yang, 2013 ), 4) higher order statistics: ( Martis,

charya, Mandana, Ray, & Chakraborty, 2013; Martis et al., 2013;

artis, Acharya, Ray, & Chakraborty, 2011 ), 5) feature selection

 dimensionality reduction: ( Bereta & Burczy ́nski, 2007; Doquire,

e Lannoy, Francois, & Verleysen, 2011; 2011; Kishore & Singh,

015; Lin, Ying, Chen, & Lee, 2008b; Llamedo & Martinez, 2011;

ar, Zaunseder, Martineznez, Llamedo, & Poll, 2011; Martis et al.,

014; Nasiri, Naghibzadeh, Yazdi, & Naghibzadeh, 2009; Oh, Lee, &

oon, 2004; Wang, Yang, Teng, Xia, & Jensen, 2007; Yeh, Wang, &

hiou, 2010; Yu & Lee, 2012; Zhang, Dong, Luo, Choi, & Wu, 2014 ),

) noise: ( Li, Rajagopalan, & Clifford, 2014; Pasolli & Melgani, 2015;

oonizi & Sassi, 2016 ), 7) discrete wavelet transform: (Augustyniak,

003; Daamouche, Hamami, Alajlan, & Melgani, 2012; Elhaj et al.,

016; Guler & Ubeyli, 2005; Islam, Haque, Tangim, Ahammad, &

hondokar, 2012; Kutlu & Kuntalp, 2012; Lin, Du, & Chen, 2008a;
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artis, Acharya, & Min, 2013; Mishra, Thakkar, Modi, & Kher, 2012;

homas, Das, & Ari, 2015; Yan & Lu, 2014 ), 8) independent compo-

ent analysis: ( Chawla, 2009; Elhaj et al., 2016; Martis, Acharya, &

in, 2013; Sarfraz, Khan, & Li, 2014; Yu & Chou, 20 08; 20 09 ), 9)

nsemble learning: ( Guler & Ubeyli, 2005; Huang, Liu, Zhu, Wang,

 Hu, 2014; Javadi, Arani, Sajedin, & Ebrahimpour, 2013; Mert,

ılıç, & Akan, 2012; Osowski, Hoai, & Markiewicz, 2004; Osowski,

arkiewicz, & Hoai, 2008; Sambhu & Umesh, 2013 ), 10) hybrid

ystems: ( Engin, 2004; Meau, Ibrahim, Narainasamy, & Omar, 2006;

sowski & Linh, 2001; Osowski et al., 2008; Ozbay, Ceylan, & Kar-

ik, 2006 ). 

Currently, we observe a very high incidence of cardiovascular

isease and the very high mortality caused by them. Despite the

reventive measures taken, cardiovascular diseases are the leading

ause of death worldwide (17.3 million people per year, account-

ng for 37% of all deaths ( AHA, 2004; 2016; WHO, 2014 )) and the

ost serious and costly health problems facing the world today

 Heron & Smith, 2003; National Center for Health Statistics, 2005 ).

irculatory system diseases are usually chronic diseases that re-

uire long-term and expensive treatment. The tendency for the in-

idence of cardiovascular diseases will increasingly intensify due to

he progressive aging of the population (the number of deaths will

ncrease from 17.3 million in 2016 to 23.6 million in 2030 ( AHA,

004; 2016; Healthsquare, 2007; WHO, 2014 )). 

The classification of cardiac disorders based on existing meth-

ds based on the calculation of morphological and dynamic fea-

ures of individual QRS complexes (heart evolution) is difficult and

rror prone due to the variability of these features in different pa-

ients ( Padmavathi & Ramakrishna, 2015 ). For this reason, solutions

urrently described in the scientific literature do not achieve a sat-

sfactory efficiency ( da S. Luz, Schwartz, Cmara-Chvez, & Menotti,

016 ). 

The existing approaches are also ineffective for certain cardiac

isorders, characterized by complex dependencies between subse-

uent evolutions of heart, for which the most important are “pro-

apsed” evolutions of heart (time intervals between subsequent

eartbeats) and not the QRS complexes that may be correct. The

roup of these dysfunctions can include pre-excitation syndromes

e.g., Wolff-Parkinson-White syndrome - WPW), atrio-ventricular

nd atrial-sinus conduction blocks, and elongate PQ intervals. 

This is why it is very important to develop specialized software

upporting medical diagnostics to more effectively identify heart

athologies earlier and monitor the conditions of patients in real

ime. The reduction in computational complexity is also an impor-

ant aspect in the context of deploying the solution in mobile de-

ices. 

For recent years, we can distinguish two main approaches in

he literature on the automatic recognition of cardiac disorders

ased on the analysis of ECG signals: 

• classification of QRS complexes ( Alvarado, Lakshminarayan, &

Principe, 2012; de Chazal, O’Dwyer, & Reilly, 2004; Mateo, Tor-

res, Aparicio, & Santos, 2016; Oster et al., 2015; Ye, Kumar, &

Coimbra, 2012a; Zhang & Luo, 2014 ), 
• analysis of longer ECG signal fragments ( Abawajy, Kelarev, &

Chowdhury, 2013; Padmavathi & Ramakrishna, 2015; Romero &

Serrano, 2001; Vafaie, Ataei, & Koofigar, 2014 ). 

It should be noted that the first approach concerning the classi-

cation of QRS complexes is substantially more popular. A key ele-

ent of this approach is the effective detection of QRS complexes.

n this basis, it is possible to segment an entire signal into indi-

idual QRS complexes and then analyze them using morphologi-

al features (determining the shape of the heart evolutions) and

ynamic features (determining dependencies between subsequent

eart evolutions). 
An alternative approach is the analysis of longer, from a single

RS complex (lasting approximately 1 s), signal fragments, usually

asting approximately 10 s; this is the time period corresponding

o a standard ECG examination at a cardiologist. Such analysis is

ased on distinctive feature extraction, for a given disorder, for

hole, longer fragments. The identification of heart pathology is

ased on the extracted features. 

Based on a current literature review ( Augustyniak &

adeusiewicz, 2009; da S. Luz, Nunes, de Albuquerque, Papa,

 Menotti, 2013; da S. Luz et al., 2016 ), the typical research

ethodology in the field of ECG signal analysis consists of 

1. obtaining data from public databases (MIT-BIH, EDB, AHA, CU,

and NST), 

2. pre-processing and signal normalization, 

3. QRS detection and ECG signal segmentation, 

4. extraction of characteristic signal features and rejection of re-

dundant and erroneous information (extraction and selection of

features), 

5. classification of QRS complexes (recognition of heart disorders),

e.g., data cross-validation, training, testing and optimization of

classifier parameters, and 

6. evaluation of the obtained results. 

In the literature, the most popular method for creating train-

ng and test sets is cross-validation, where the two most popu-

ar validation schemes are Afkhami, Azarnia, and Tinati (2016) and

a S. Luz et al. (2016) 

• class-oriented validation schemes (intra-patient paradigm) - the

selection of elements for training and test sets based on signals

from the same patient, and 

• subject-oriented validation schemes (inter-patient paradigm) 

( de Chazal et al., 2004 ) - the selection of elements for training

and test sets based on signals from other patients. 

Designing universal algorithms for the general population,

ot for an individual person, using a subject-oriented validation

cheme is a better solution. This solution demonstrates lower ef-

ectiveness on the test set but is more reliable and stable and per-

orms better in practice due to the smaller fit of the models to the

raining set and better knowledge generalization ( Afkhami et al.,

016 ). 

The evolutionary-neural system ( Rutkowski, 2008 ) is a hybrid

hat combines the advantages of two computational intelligence

ethods: broadly defined Neural Networks ( Prieto et al., 2016 )

nd Evolutionary Computation ( Back, Hammel, & Schwefel, 1997 ).

ith this synergy, we can achieve greater efficiency through bet-

er optimization of the classifier tuning by Genetic Algorithm

 Holland, 1992 ) that are parts of the system. In the field of heart

isorders recognition, evolutionary-neural systems are also popular

nd used with success: ( Daamouche et al., 2012; Dilmac & Korurek,

015; Ince, Kiranyaz, & Gabbouj, 2009; Khazaee & Ebrahimzadeh,

010; Korurek & Dogan, 2010; Lessmann, Stahlbock, & Crone, 2006;

elgani & Bazi, 2008; Shadmand & Mashoufi, 2016 ). 

The main aims of the research were the following: 

Aim 1 Develop new and effective methods for the automatic

recognition of myocardium dysfunctions based on ECG sig-

nals modeled on the work of cardiologists. 

Aim 2 Design algorithms for use in tele-medicine and mobile

devices for patient self-control and prevention applications

(low computational complexity). 

Aim 3 Design universal algorithms not for individuals but for

the general population. 

Based on a literature review ( da S. Luz et al., 2013; da S. Luz

t al., 2016 ), it can be stated that the innovative elements of this

esearch include the following: 
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Table 1 

A description of the database with the selected 10 0 0 ECG fragments along with the allocation of signals to the training and test sets for 10-fold cross-validation 

method. 

10-fold cross-validation 

Groups 1–9 Group 10 

No. Class Fragments number Patients number Training set Test set Training set Test set 

1 Normal sinus rhythm 283 23 255 28 252 31 

2 Atrial premature beat 66 9 60 6 54 12 

3 Atrial flutter 20 3 18 2 18 2 

4 Atrial fibrillation 135 6 122 13 117 18 

5 Supraventricular tachyarrhythmia 13 4 12 1 9 4 

6 Pre-excitation (WPW) 21 1 19 2 18 3 

7 Premature ventricular contraction 133 14 120 13 117 16 

8 Ventricular bigeminy 55 7 50 5 45 10 

9 Ventricular trigeminy 13 4 12 1 9 4 

10 Ventricular tachycardia 10 3 9 1 9 1 

11 Idioventricular rhythm 10 1 9 1 9 1 

12 Ventricular flutter 10 1 9 1 9 1 

13 Fusion of ventricular and normal beat 11 3 10 1 9 2 

14 Left bundle branch block beat 103 3 93 10 90 13 

15 Right bundle branch block beat 62 3 56 6 54 8 

16 Second-degree heart block 10 1 9 1 9 1 

17 Pacemaker rhythm 45 2 41 4 36 9 

Sum 10 0 0 45 904 96 864 136 
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Methodology - a new approach to ECG signal analysis. The

designed system is modeled on the work of a cardiologist

based on the analysis of longer (10-s) ECG signal fragments,

which contain multiple heart evolutions. 

17 recognized classes - normal sinus rhythm + pacemaker

rhythm + 15 cardiac disorders. 

Genetic training and optimization of classifiers - a genetic al-

gorithm coupled with 10-fold cross-validation for signal fea-

ture selection and classifier parameter optimization. 

The innovative elements of this research in the analysis of long

(10-s) fragments of ECG signals include the following: 

Feature extraction - strengthen the characteristic features of

signals by estimating the power spectral density using the

Welch method and the discrete Fourier transform (data anal-

ysis in the frequency domain for several Hamming window

widths). 

Genetic selection of features – the elimination of redundant

features (frequency components of the power spectral den-

sity of the ECG signal) by a genetic algorithm. 

2. Materials and methods 

2.1. Materials 

2.1.1. ECG database 

For research purposes, the ECG signals were obtained from the

http://www.physionet.org PhysioNet ( Goldberger et al., 20 0 0 ) ser-

vice from the MIT-BIH Arrhythmia ( Moody & Mark, 2001 ) database.

The created database with ECG signals is described below. 

• The ECG signals were from 45 patients. 
• The ECG signals contained 17 classes: normal sinus rhythm,

pacemaker rhythm, and 15 types of cardiac dysfunctions (for

each of which at least 10 signal fragments were collected). 
• All ECG signals were recorded at a sampling frequency of 360

[Hz] and a gain of 200 [adu / mV]. 
• For the analysis, 10 0 0, 10-s (360 0 samples) fragments of the

ECG signal (not overlapping) were randomly selected. 
• Only signals derived from one lead, the MLII, were used. 

A description of the collected signals is given in Table 1 , which

presents the analyzed heart disorders, number of signal fragments
ollected for each disorder, number of patients from whom the

CG data were derived, and division of signal fragments into train-

ng and test sets. 

An important aspect is the appropriate balance of data. The

umber of signal fragments corresponding to physiological heart

volutions should not be significantly greater than the number of

CG signals for the other classes. This may cause an artificial in-

rease in the recognition efficiency for cardiac disorders. Therefore,

he research used a proportional number of ECG signal fragments

or each class, (from 1.00% to 38.04%, Table 1 ), which prevents the

ver-fitting effect. 

Obtaining a greater number of suitable ECG signal fragments,

rom greater number of patients, for the rarest disorders (10 or

1 ECG signal fragments in Table 1 ) from the MIT-BIH Arrhyth-

ia database for the MLII lead was not possible. In addition, keep-

ng in mind the correct balance of data: 1) between classes and

) between patients, the maximum number of ECG signals should

ot exceed 10 0 0 fragments. Because increasing the number of frag-

ents may cause incorrect training of classifiers. Not all classes /

atients will have an impact on creation of models. 

Collected data from all 48 records is not possible because

ecords no. 102 and 104 do not have signals from MLII lead. In

ecord no. 232, the entire signal containing rhythm “Sinus brady-

ardia” (not recognized in the article). 

.2. Methods 

This section presents the subsequent stages of processing and

nalysis of the ECG signals along with the methods utilized. 

.2.1. Step I - Preprocessing with normalization 

The aim of this stage was to unify the data from various ECG

evices (gain reduction, frequency uniformity, and constant com-

onent reduction) and from different patients (normalization of

ignal amplitude). 

In the research, the data were properly organized, and three

reprocessing (normalization) paths were tested: 

• no normalization : 
• reduction of gain 

• reduction of constant component (mean signal value) 
• rescaling : 

• reduction of gain 

http://www.physionet.org
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• reduction of constant component 
• rescaling signal to the range [ −1 , 1] 
• reduction of constant component 

• standardization : 
• reduction of gain 

• reduction of constant component 
• signal standardization (mean signal value = 0 and signal

standard deviation = 1) 

Rescaling was performed on all the ECG signal fragments for a

iven disorder for a given patient. 

In order to achieve the desired effects, the following methods

ere used: 

reduction of gain: 

S = 

S g 

g 
(1) 

where: 

S – ECG value after gain reduction, 

S g – ECG value before gain reduction, 

g – value of gain of device on which ECG signal was

recorded. 

• reduction of constant component: 

μ = 

1 

n 

·
n ∑ 

i =1 

x j (i ) (2) 

where: 

n – number of signal samples j , 

i – index of consecutive signal samples, 

j – index of consecutive signals. 

• rescaling: 

x̄ j (i ) = 

x j (i ) − min (x j ) 

ma x ( x j ) − min (x j ) 
(3) 

where: 

i – index of consecutive signal samples, 

j – index of consecutive signals, 

min ( x j ) – minimum signal amplitude value j = −1 , 

max ( x j ) – maximum signal amplitude value j = 1 . 

• standardization: 

ˆ x j (i ) = 

x j (i ) − μ

σ
(4) 

where: 

i – index of consecutive signal samples, 

j – index of consecutive signals, 

μ – mean signal value j , calculated from the formula 2 , 

σ – standard deviation of the signal j , calculated from the

formula: 

σ = 

√ 

1 

n − 1 

n ∑ 

i =1 

(x j (i ) − μ) 2 (5) 

.2.2. Step II - Feature extraction 

The aim of this stage was to extract and strengthen the charac-

eristic features of the signal and thereby increase the recognition

fficiency for the dysfunctions. 

Due to the periodic nature of the ECG signal, the extraction

f features based on the estimation of the power spectral density

PSD) ( Smith, 2002 ) of the ECG signal was performed using the

elsh method ( Welch, 1967 ) and the discrete Fourier transform

DFT) ( Smith, 2002 ). Then, to normalize the frequency components

f the power spectral density, the transformed signal was logarith-

ized. 

For feature extraction applied the following methods: 
Power spectral density - it represents the signal in the fre-

quency or pulsation domain, it is obtained by Fourier trans-

form, has dimensions: [ power] per [ Hz ]. Spectral density de-

scribes how much signal (in terms of value) occurs per unit

bandwidth. 

Welch’s method - it is used to estimate the power spectral

density function of the signals. Welch’s method amounts to

averaging of several modified periodograms. 

Periodogram - is a diagram that shows the most important pe-

riodic regularities in the signal. Peaks in the diagram cor-

respond to periods (cycles) which closest correlate with the

data. The periodogram method is one of the nonparametric

methods used for estimation of power spectral density. 

Fourier discrete transform - Fourier transform is used for sig-

nal distribution into sinusoidal and cosine waveforms, and

thus transform the signal from the time domain to the fre-

quency domain. The counterpart of the Fourier transform for

the discrete (digital) and periodic signals is a discrete Fourier

transform. It is calculated from the formula: 

X (k ) = 

N−1 ∑ 

n =0 

x (n ) · e − j· 2 ·π ·n ·k 
N (6)

where: 

x ( n ) – is the n th sample of the discrete signal, 

k – is the line number (frequency component number); k =
0 , . . . , N − 1 , 

N – number of signal samples. 

• Hamming window - is one of the functions describing the time

window, which determines the way of sampling from the

signal. 
• Series of logarithms of signals - is a form of normalization of

the features / attributes of the signals entering the inputs of

the classifiers, calculated according to the formula: 

x (n ) = 10 · log 10 (P xx (n )) (7)

where: 

n – index of consecutive signal samples, 

x ( n ) – series of logarithms of signal, 

P xx ( n ) – power spectral density. 

To calculate the power spectral density, 4 Hamming window

idths: 128, 256, 512 and 1024 samples, were applied. The sub-

equent values of the tested Hamming window widths were deter-

ined using a geometric string (multiples of 2). 

In all experiments, as a result of the feature extraction, from

 single fragment of ECG signal, a feature vector with a length of

001 frequency components was obtained. 

To estimate the power spectral density (in all experiments), the

ollowing parameters were used: the number of common samples

or 2 adjacent signal fragments equal to half of the width of the

dopted Hamming window and a DFT vector length equal to 80 0 0

s well as a sampling frequency equal to 360 [Hz]. 

.2.3. Step III - Feature selection 

The aim of this stage was to reduce the data (and thus accel-

rate the computations) and both extract and strengthen the char-

cteristic features of the signal by reducing the features that carry

edundant and erroneous information. 

Genetic algorithms (GAs) ( Holland, 1992; Rutkowski, 2008 ) are

 method of problem solving based on natural evolution, mainly

ptimization problems. GAs are search procedures based on the

echanisms of natural selection and inheritance. They benefit

rom the evolutionary principle of survival of the best adapted in-

ividuals. GA belongs to a group of evolutionary algorithms. 
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In the research, a genetic algorithm (GA) was used for the fea-

ture selection. The genes in the population of individuals repre-

sented subsequent single features/attributes of the signal entered

as input for the classifiers. 

Genes could take on the following values: 

• 0 – reject a given feature or 
• 1 – accept a given feature. 

The genetic algorithm creates subsequent populations of indi-

viduals based on the fitness function and optimizes the efficiency

of the classifiers through the selection of the most valuable fea-

tures of the ECG signal. 

2.2.4. Step IV - Cross-validation 

The aim of this stage was to eliminate the effect of over-fitting

the designed classifiers, thereby increasing the effect of generaliz-

ing knowledge and increasing the reliability of the obtained results.

The methods of selecting elements for training and test sets can

be divided into the following types ( Kuncheva, 2004 ): 1) resub-

stitution, 2) hold-out, 3) k-fold cross-validation, 4) leave-one-out

cross-validation and 5) bootstrap. 

We applied the method of k-fold cross-validation (CV)

( Kuncheva, 2004 ) to the selection of elements for the training and

test sets. Two types of cross-validation were used to create the

training and test sets: 

• 4-fold cross-validation : A total of 4 combinations of training

and test sets. The test sets for the first three groups were cre-

ated by randomly selection elements, for each class (disorder),

from the entire signal base. The test set for the fourth group

was created from the remaining elements. The training sets

consisted of elements that complemented to test sets for the

entire signal base. 
• 10-fold cross-validation : A total of 10 combinations of training

and test sets. The test sets for the first nine groups were created

by randomly selection elements, for each class (disorder), from

the entire signal base. The test set for the tenth group was cre-

ated from the remaining elements. The training sets consisted

of elements that complemented the test sets for the entire sig-

nal base. 

Applying a k-fold cross-validation method that is more con-

sistent with the subject-oriented validation scheme (inter-patient

paradigm) than class-oriented validation scheme (intra-patient

paradigm) ( Afkhami et al., 2016; de Chazal et al., 2004; da S. Luz

et al., 2016 ) 

Table 1 shows the allocation of ECG signal fragments (divided

into disorders) to training and test sets for 10-fold-cross-validation.

The reference matrices with the expected responses were cre-

ated to enable a comparison of the final results. They contained

the required outputs of the classifiers. The reference matrices for

both variants of the cross-validation are not shown in this article

because of their known form. 

2.2.5. Step V - Machine learning algorithms 

This research’s aim was the recognition of heart disorders based

on samples (ECG signal fragments). This analysis was based on the

design and selection of appropriate parameters and subsequently

retraining and testing the systems using machine learning algo-

rithms ( Alpaydin, 2014; Bishop, 2006; Engelbrecht, 2007 ). 

The following methods were applied: 

1. Probabilistic Neural Network (PNN) - an artificial neural net-

work ( Prieto et al., 2016; Tadeusiewicz, 2015 ) developed by

Specht (1990) . Used to solve classification problems, uses the

kernel approximation technique to estimate the probability

density function for classes. In the PNN network are at least
three layers: input, radial and output. Radial neurons have pa-

rameters copied directly from the training data, each of them

corresponds to one case. Output neurons sum up the values ap-

pearing on radial neurons outputs belonging to the class corre-

sponding to the given output neuron. Output values are propor-

tional to kernel estimators, probability density functions for dif-

ferent classes, and directly estimate the probability of belonging

to each classes. The only parameter that influences the learn-

ing process of the PNN is the smoothing factor. This coefficient,

representing the radial deviation of the appropriate Gaussian

functions, is a measure of the range of impact of knowledge

contained in the elements of the learning sequence on the sur-

rounding areas of the input signals space. 

2. Radial Basis Function Neural Network (RBFNN) - an artificial

neural network developed by Broomhead and Lowe (1988) . It

usually has one hidden layer, containing radial neurons. Divides

the space of the input signals using hyperspheres (defined by

their centers and radii). The response surface of a single radial

neuron is a Gaussian function, with a vertex located above the

center and a decreasing value of the function along with dis-

tance from this point. You can change the slope of the Gaussian

function. Radial neuron is defined by its center and a parame-

ter called “radius”. A point in an N-dimensional space is defined

using N numbers, which exactly corresponds to the number of

neuron weights. 

3. Support Vector Machine (SVM, nu-SVC) - the classifier devel-

oped by Cortes and Vapnik (1995) . The libsvm library for MAT-

LAB ( Chang & Lin, 2011 ) was utilized. It was originally used for

binary classification. The principle of operation of the SVM al-

gorithm, for the simplest problem of recognizing two classes, is

to find a hyperplane that separates elements belonging to both

classes. The hyperplanes fulfilling this condition are infinitely

many, however, should be found optimal. For this purpose, the

algorithm first finds the support vectors located at the periph-

ery of the considered classes, and then determines the optimal

hyperplane spaced from the elements of both classes (extreme

vectors) with the maximum (the widest) margin. The effective-

ness of the SVM algorithm depends on its type: C-SVC, nu-

SVC, epsilon-SVR, nu-SVR and the type of the kernel function

( Cristianini & Schölkopf, 2002; Scholkopf & Smola, 2001 ): 
• linear: K(x i , x ) = X T X i 
• polynomial: K(x i , x ) = (yx T x + c d ) 
• radial (Radial Basis Function - RBF): K(x i , x ) = −γ ‖ x −

x i ‖ 2 , γ > 0 
• Gaussian RBF: K(x i , x ) = exp(−‖ x − x i ‖ ) 2 / 2 σ 2 

• sigmoid: K(x i , x ) = tanh (yx T x i + c) 

4. k-Nearest Neighbor (kNN) - a non-parametric method used

for classification and regression ( Altman, 1992 ). The most fa-

mous minimum-distance classifier. This method consists in as-

signing a classified sample to the most common class among

its neighbors, in the sense of a determined distance measure.

The most commonly used distance measures are: Euclideandis-

tance or Manhattandistance . Less frequently used, due to the

higher computational cost, are metrics: Chebyshe v or Mahalono-

bis . The k -NN classifier learning process consists in selecting pa-

rameter k . Many different methods of selecting this parameter

have been proposed in the literature. However, the simplest and

most commonly used method is cross-validation. 

The classification of the samples with the machine learning

ethods used in the present research was based on the Winner-

akes-All (WTA) rule. This means that the classification algorithm,

epending on the value of certain algorithm-dependent response

arameters, always assigns exactly one class identifier to a test

ample, independent of the number of classes. 
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Fig. 1. Scheme of Experiment. 

 

 

.2.6. Step VI - Parameter optimization 

The aim of this stage was to increase the efficiency of the de-

igned algorithms. 

Two methods for the parameter optimization were applied and

ompared: 

• Grid search ( Bergstra & Bengio, 2012 ) - this is a traditional

method of hyperparameter optimization group, which consists

in a complete search of a hand-specific subset of the space, the

optimized parameter of the classifier, and 

• Genetic Algorithm , Section 2.2.3 ( Holland, 1992; Rutkowski,

2008 ). 

.3. Assumptions 

The adopted research methodology consisted of the following

ssumptions, not described in Sections 2.1 and 2.2 : 

A1 Not applying signal filtering due to both the use of Welch’s

method and the genetic selection of features and 

A2 Not applying the QRS complex detection and segmentation

of the ECG signal. 

A3 Analyzing ECG signals fragments that contain one class type

(except of normal sinus rhythm). 

.4. Experiments 

Four experiments were conducted based on the analysis of the

CG signal according to the assumptions from Sections 2.1 –2.3 : 1)

asic analysis of ECG signals, 2) genetic optimization of parame-

ers, 3) genetic selection of features and 4) enlarged database (from

44 ECG fragments and 29 patients to 10 0 0 ECG fragments and 45

atients). 3 types of normalization, 4 widths of Hamming window,

 types of cross-validation, 4 types of classifiers and 2 methods of

arameter optimization were tested. 

Fig. 1 shows the scheme of one of the conducted experiments. 

.5. Evolutionary-neural system 

In research designed an evolutionary-neural system that con-

isted of a classifier (e.g., SVM) trained by a genetic algorithm. The

enetic algorithm coupled with a 10-fold cross-validation was used

o select signal features and optimize the parameters of the classi-

er. 

Table 2 contains detailed information about the genetic algo-

ithm and optimum values of parameters for evolutionary-neural

ystems. Procedure No. 1 presented the evolutionary-neural system

lgorithm. 

.6. Evaluation criteria 

To evaluate the designed classifiers, the following coefficients

ere determined ( Fawcett, 2006; Sokolova & Lapalme, 2009 ): 1)

he accuracy ACC , 2) sensitivity SEN , 3) specificity SPE , 4) κ co-

fficient and 5) sum of errors ERR sum 

. These coefficient were cal-

ulated based on the generated confusion matrices for all exper-

ments, methods, and classifiers. The following coefficients were

lso determined: 6) Acceptance feature coefficient C F , 7) Optimiza-

ion time T o , 8) Training time T t , and 9) Classification time T c . 

The definitions of the calculated coefficients are as follows: 

• Accuracy 

ACC = 

( 

N ∑ T P + T N 

T P + F P + T N + F N 

) 

· 100% /N (9) 
i =1  
• Sensitivity 

SEN = 

( 

N ∑ 

i =1 

T P 

T P + F N 

) 

· 100% / N (10) 

• Specificity 

SP E = 

( 

N ∑ 

i =1 

T N 

F P + T N 

) 

· 100% / N (11) 

where 

N – Number of sets used in the cross-validation variant: 4-fold

or 10-fold validation, 

TP – True Positive, 

TN – True Negative, 

FP – False Positive, and 

FN – False Negative. 

• κ coefficient (Fleiss’ kappa) – a coefficient used to evaluate

the efficiency of the designed classifier/algorithm. It is used for
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Table 2 

Detailed information about designed evolutionary-neural systems. 

Feature selection and classifier parameter optimization 

The genetic algorithm coupled with the 10-fold cross-validation method was used for feature selection and classifier parameter optimization 

Genetic algorithm 

• Number of individuals in the population: 50; 
• Type of gene representation: floating-point vectors; 
• Chromosome construction of individual: Floating point vector of the form 

[ g 1 , g 2 , c 1 , . . . , f 4001 ] for SVM , where g 1 – the first gene, which determines the value 

of the first parameter, γ , g 2 – the second gene, which determines the value of the 

second parameter, ν , and f 1 , . . . , f 4001 – 4001 genes, with values in the range of [0, 

1], which determine the feature selection, rounded to the values 1 – acceptance of a 

feature – or 0 – rejection of a feature. For the other classifiers ( kNN , PNN , and 

RBFNN ), the chromosome consists of one gene, g , which determines the value of one 

optimized parameter; 
• Initial population: random, uniform; 
• Range of the gene values for the initial population: the local range of gene values for 

each classifier parameter, consistent with the information given in the line 

Optimized parameters , experimentally selected based on the global (broader) range. 

For feature selection, the range is [0, 1]; 
• Target value of fitness function: 0; 
• Maximum number of generations: 30; 
• Type of crossover: intermediate; Probability of crossover: 0.7; 
• Type of mutation: uniform; Probability of mutation: 0.3; 
• Number of individuals in current generation that are guaranteed to survive to the 

next generation: 3; 
• Method of scaling the value of the fitness function: ranking; 
• Method of parent selection: tournament; 
• Fitness function of individuals calculated based on the following formula: 

ERR = w l · err Lsum + w t · err Tsum + w f · F a 
F 

(8) 

where: 

w l = 1 – weight for errors from the training set; 

w t = 1 – weight for errors from the test sets; 

w f = 1 – weight for acceptance feature coefficient; 

err Lsum – total number of errors in the 10 training sets; 

err Tsum – total number of errors in the 10 test sets; 
F a 
F 

– acceptance feature coefficient: the ratio of the number of accepted features, F a , to 

the total number of features, F ; 
• As a result of the feature selection, the length of the feature vector was on average 

reduced twice to approximately 20 0 0 features (frequency components of the ECG 

signal) - Table 3 ; 

CLASSIFIERS 

Basic parameters 

SVM 

• Type: nu-SVC; 
• Kernel function type: RBF (radial, Gaussian type); 
• Number of outputs = 1, from the set: {1, …, 17}; 

kNN 

• Number of nearest neighbors = 1; 
• Metric of distance calculation: Minkowski ; 
• Number of outputs = 1, from the set: {1, …, 17}; 

PNN 

• Activation function: radial (Gaussian type) - competition; 
• Training algorithm: mapping of training set based on distance; 
• Method of calculating the objective function: sse; 
• Topology (neurons): length of the feature vector – 904 ∨ 864 – 17; Biases: 1 – 0; 
• Number of outputs = 17, from the set: {0, 1}; 

RBFNN 

• Activation function: radial (Gaussian type) - linear; 
• Training algorithm: mapping of training set based on distance; 
• Method of calculating the objective function: sse; 
• Topology (neurons): length of the feature vector – 904 ∨ 864 – 17; Biases: 1 – 1; 
• Number of outputs = 17, from the set: {0, 1}. Value of “1” assigned to the output 

(class) with the highest stimulus; 

Optimized parameters 

The final parameter ranges were selected experimentally based on a broader range 

SVM 

• The parameter γ ( −g) determines the spread of the radial basis function (RBF) of the 

kernel from the range [2 · 10 −6 ; 2 · 10 −4 ] , with resolution 10 −14 , 50 · 30 = 1500 

values; 
• The parameter ν ( −n ) determines the width of the margins from the range [0.001; 

0.05], with resolution 10 −14 , 50 · 30 = 1500 values; 

kNN 

• The parameter exponent affects the calculation of the Minkowski distance from the 

range [0.01; 100], with resolution 10 −14 , 50 · 20 = 10 0 0 values; 

PNN 

• The parameter spread determines the spread of the radial basis function (RBF) of the 

network kernel from the range [1; 100], with resolution 10 −14 , 50 · 20 = 10 0 0 

values; 

RBFNN 

• The parameter spread determines the spread of the radial function (RBF) of the 

network kernel from the range [1; 300], with resolution 10 −14 , 50 · 20 = 10 0 0 

values; 
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multi-class problems concerning the recognition of more than

two classes. A higher value indicates a better result. 

κ = 

( 

N ∑ 

i =1 

M 

∑ n 
j=1 m j, j −

∑ n 
j=1 (G j C j ) 

M 

2 − ∑ n 
j=1 (G j C j ) 

) 

· 100% / N (12) 

where 

N – the number of sets used in the cross-validation variant: 4-

fold or 10-fold validation, 

j – the class index, 

n – the number of classes = 17, 

M – the total number of classified samples that are being com-

pared to ground truth; 

m j , j – the number of samples belonging to the ground truth 

class j that have also been classified with a class j (i.e., values

found along the diagonal of the confusion matrix); 

C j – the total number of classified samples belonging to class j ;

and 

G j – the total number of ground truth samples belonging to

class j . 

• Sum of errors ( ERR sum 

) – calculated on the basis of the con-

fusion matrix based on the number of erroneous classifications

and is equal to the sum of the off-diagonal entries of the con-

fusion matrix per 10 0 0 classifications. 
• Acceptance feature coefficient ( C F ) – the ratio of the number

of accepted features F a to the total number of features F ex-

pressed as a percentage. Determined through the use of genetic

feature selection. This coefficient is calculated according to the

following formula: 

C F = 

F a 

F 
· 100% (13) 

where 

F a – the number of accepted features and 

F – the total number of features. 

• Optimization time ( T o ) – calculated for a given classifier as the

sum of all training and classification times for all training and

test sets for a given variant of the cross-validation method (4-

fold or 10-fold cross-validation). This time is the time required

to find the optimal parameter configuration of the given clas-

sifier or the optimal vector of input features within the feature

selection. This is used for ECG signals after pre-processing and

feature extraction. 
• Training time ( T t ) – calculated for a given classifier as the sum

of the training times for all training sets for a given variant

of cross-validation method (4-fold or 10-fold cross-validation).

This is used for ECG signals after pre-processing and feature ex-

traction and selection. 
• Classification time ( T c ) – calculated for a given classifier as the

average time for a single classification of a 10-s fragment of an

ECG signal after pre-processing and feature extraction and se-

lection. 

The above-mentioned coefficients are applied to estimate the

verall performance of the machine learning methods used in this

esearch with respect to the recognition of the different classes of

CG signal fragments. To verify the efficiency of the recognition

f individual classes, the same coefficients were calculated but for

lass S . For this purpose, the values of TP ( S ), TN ( S ), FP ( S ), and FN ( S )

ere calculated for each class. These values were calculated based

n the confusion matrix using the traditional method. Then, based

n these values, the values of the coefficients ACC ( S ), SEN ( S ), and

PE ( S ) were calculated. 

In this article ( Table 5 ), the sensitivity coefficient (SEN) is

qual to the overall accuracy coefficient (Acc) from the litera-

ure ( de Chazal et al., 2004; da S. Luz et al., 2016 ). This is
ecause the WTA (Winner-Takes-All) method was used for the

lassifiers. 

. Results 

All combinations of methods (2.4) have been tested on a

maller database containing 744 ECG fragments and 29 patients.

his article presents the results for the 8 paths that have achieved

he highest sensitivity ( SEN ): 1 type of normalization x 2 Hamming

indow widths x 4 types of classifiers. The results obtained were

ery similar for both variants of databases (744 and 10 0 0 ECG frag-

ents). 

The study utilized the MATLAB R2014b environment together

ith the LIBSVM library ( Chang & Lin, 2011 ). The computations

ere performed on an Intel Core i7-6700K 4.0 GHz machine with

2GB of RAM (only a single core was used). The total computation

imes, consisting of the training, testing, and optimization phases,

re shown in Tables 3 and 4 . 

Due to the use of the WTA method and the recognition of 17

lasses, the most significant of the calculated coefficients are sen-

itivity ( SEN ) and sum of errors ( ERR sum 

), Table 3 . The values of

ccuracy ( ACC ) and specificity ( SPE ) coefficients are very high for

ll methods ( ACC > 98%, SPE > 99%, Table 3 ). 

The optimization time needed to obtain the results can be

hortened multiple times by parallelization the computation. 

.1. Preprocessing with normalization 

In Fig. 2 , a comparison of the following ECG signal fragments

s presented: A – concentration within the classes: normal sinus

hythm (all fragments of the ECG signal, where other colors rep-

esent signals from other patients); B – separation between all

7 classes (only the first fragments of the ECG signal for each

lass, where other colors represent the signals from other classes).

he graphs show the 10-s fragments of the ECG signals after nor-

alization based on rescaling the signal to the range [ −1 , 1] , re-

ucing the constant component, and performing feature extrac-

ion based on the DFT with a Hamming window with a width of

12 samples. 

.2. Experiments 

This section presents the results of evolutionary-neural systems,

hich achieved the highest recognition sensitivity for heart dis-

rders. On all the training sets, the obtained recognition sensitiv-

ty ( SEN ) of myocardium dysfunctions was 100% (zero errors). The

RR sum 

coefficient equals the sum of the errors on all training and

est sets 10 0 0 classifications (in the training sets, in all cases, the

um of the errors equals zero). 

Table 3 presents detailed results on 4 types of classifiers

SVM, kNN, PNN and RBFNN), 1 type of signal pre-processing

ethod (rescaling + reduction in constant component) and 2

ypes of feature extraction (2 widths of the Hamming window:

12 and 1024 samples) for one variant of the cross-validation

ethod - 10-fold cross-validation, and for 10 0 0 ECG signal

ragments. 

In Figs. 3 and 4 , the detailed results for the best classifier - SVM

rom Table 3 - are presented. In Fig. 3 , the following coefficient val-

es are presented: the sum of errors ( ERR ), accuracy ( ACC ), sensi-

ivity ( SEN ), and specificity ( SPE ) for each class. Fig. 4 presents the

oefficient value comparison of the sum of errors ( ERR ), accuracy

 ACC ), sensitivity ( SEN ), specificity ( SPE ), and κ coefficient for the

ecognition of 17, 15, and 13 classes. 

In Table 4 , a comparison of the obtained results for 4 designed

lassifiers is presented. 
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Table 3 

The results of evolutionary-neural systems for 10-fold cross-validation. In all training sets, in all cases, the sum of the errors equals zero. 

Classifiers 

Normalization: Window width: SVM kNN PNN RBFNN 

RESCALING + REDUCTION OF CONSTANT COMPONENT 512 SAMPLES −g = 3 . 04 e − 5 

−n = 0 . 0118 exponent = 2 . 88 spread = 18 . 87 spread = 154 . 14 

ERR sum = 98 ERR sum = 117 ERR sum = 114 ERR sum = 115 

ACC = 98 . 85% ACC = 98 . 62% ACC = 98 . 66% ACC = 98 . 65% 

SEN = 90 . 20 % SEN = 88 . 30 % SEN = 88 . 60 % SEN = 88 . 50 % 

SPE = 99 . 39% SPE = 99 . 27% SPE = 99 . 29% SPE = 99 . 28% 

κ = 88 . 49 % κ = 86 . 38 % κ = 86 . 68 % κ = 86 . 51 % 

C F = 48 . 56% C F = 49 . 44% C F = 49 . 74% C F = 49 . 54% 

T t = 18 . 7926 [ s ] T t = 0 . 1280 [ s ] T t = 0 . 5855 [ s ] T t = 99 . 7178 [ s ] 

T c = 0 . 0023 [s] T c = 0 . 0701 [s] T c = 0 . 0079 [s] T c = 0 . 0076 [s] 

T o = about 135 [h] T o = about 170 [h] T o = about 135 [h] T o = about 155 [h] 

1024 SAMPLES −g = 2 . 52 e − 5 

−n = 0 . 0207 exponent = 1 . 57 spread = 26 . 17 spread = 174 . 65 

ERR sum = 115 ERR sum = 134 ERR sum = 121 ERR sum = 119 

ACC = 98 . 65% ACC = 98 . 42% ACC = 98 . 58% ACC = 98 . 60% 

SEN = 88 . 50 % SEN = 86 . 60 % SEN = 87 . 90 % SEN = 88 . 10 % 

SPE = 99 . 28% SPE = 99 . 16% SPE = 99 . 24% SPE = 99 . 26% 

κ = 86 . 44 % κ = 84 . 33 % κ = 85 . 85 % κ = 85 . 99 % 

C F = 48 . 26% C F = 49 . 66% C F = 49 . 09% C F = 49 . 61% 

T t = 29 . 1564 [ s ] T t = 0 . 1290 [ s ] T t = 0 . 5173 [ s ] T t = 91 . 7492 [ s ] 

T c = 0 . 0028 [s] T c = 0 . 0680 [s] T c = 0 . 0072 [s] T c = 0 . 0072 [s] 

T o = about 135 [h] T o = about 170 [h] T o = about 135 [h] T o = about 155 [h] 

Table 4 

A comparison of the obtained results for 4 designed classifiers, 10 0 0 ECG fragments, 10-fold cross-validation method, 

genetic optimization and genetic feature selection. In all training sets, in all cases, the sum of the errors equals zero. 

Classifiers 

Coefficients kNN RBFNN PNN SVM 

Results obtained for the best case (combination of classifier + normalization + window width) 

Normalization Rescaling Rescaling Rescaling Rescaling 

Window 512 512 512 512 

ERR SUM 117 115 114 98 

ACC 98.62% 98.65% 98.66% 98.85% 

SEN 88.30% 88.50% 88.60% 90.20% 

SPE 99.27% 99.28% 99.29% 99.39% 

κ 86.38% 86.51% 86.68% 88.49% 

C F 49.44% 49.54% 49.74% 48.56% 

T t [S] 0.1280 99.7178 0.5855 18.7926 

T C [S] 0.0701 0.0076 0.0079 0.0023 

T O [ H ] 170 155 135 135 

Average result for all cases of experiment 

ERR SUM 125.5 117.0 117.5 106.5 

ACC 98.52% 98.63% 98.62% 98.75% 

SEN 87.45% 88.30% 88.25% 89.35% 

SPE 99.22% 99.27% 99.27% 99.34% 

κ 85.36% 86.25% 86.27% 87.47% 

C F 49.55% 49.58% 49.42% 48.41% 

T t [ S ] 0.1285 95.7335 0.5514 23.9745 

T C [ S ] 0.0691 0.0074 0.0076 0.0026 

T O [ H ] 170 155 135 135 

Fig. 2. Comparison of the analyzed classes after applying the DFT and logarithm procedure: A – concentration within the classes: normal sinus rhythm (all fragments of the 

ECG signal, where the other colors represent signals from other patients); B – separation between all 17 classes (only the first fragments of the ECG signal for each class, 

where the other colors represent the signals from other classes). 
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Table 5 

A comparison of the results under the methods based on the subject-oriented validation scheme and the same database - MIT-BIH Arrhythmia 

( da S. Luz et al., 2016 ). 

No. Work Year # of classes Feature set Classifier Acc = SEN 

1. Escalona-Moran et al. (2015) 2008 5 Raw wave RC 98% 

2. Huang et al. (2014) 2014 5 Random projection, RR-intervals Ensemble of SVM 94% 

3. Llamedo and Martinez (2011) 2011 5 Wavelet, VCG + SFFS Weighted LD 93% 

4. Lin and Yang (2014) 2014 5 Normalized RR-interval Weighted LD 93% 

5. Bazi, Alajlan, AlHichri, and 

Malek (2013) 

2013 5 Morphological, Wavelet SVM, IWKLR, DTSVM 92% 

6. Soria and Martinez (2009) 2009 5 RR-Intervals, VCG, 

morphological + FFS 

Weighted LD 90% 

7. Mar et al. (2011) 2011 5 Temporal Features, Morphological, 

statistical features + SFFS 

Weighted LD, MLP 89% 

8. Zhang and Luo (2014) 2014 5 RR-intervals, morph. features, 

ECG-inter. and segments, wavelet 

coeff. 

Combined SVM 87% 

9. Zhang et al. (2014) 2014 5 RR-intervals, morphological 

features, ECG-intervals and 

segments 

Combined SVM 86% 

10. Ye, Kumar, and 

Coimbra (2012b) 

2012 5 Morphological, Wavelet, RR 

interval, ICA, PCA 

SVM 86% 

11. Park et al. (2008) 2008 5 HOS, HBF Hierarchical SVM 85% 

12. de Lannoy, Francois, Delbeke, 

and Verleysen (2012) 

2012 5 RR-intervals, ECG-segments, 

morphological, HBF, HOS 

Weighted CRF 85% 

13. de Chazal et al. (2004) 2004 5 ECG-Intervals, Morphological Weighted LD 83% 

14. de Lammoy, Francois, Delbeke, 

and Verleysen (2010) 

2010 5 ECG-Intervals, morphological, HOS, 

HBF coefficients 

Weighted SVM 83% 

Pławiak 13 Frequency components of the 

power spectral density of the 

ECG signal 

Evolutionary-Neural System 

(based on SVM) 

95% 

15 91% 

17 90% 

Fig. 3. Comparison of coefficient values for each class. 

Fig. 4. Comparison of coefficient values for the recognition of 17, 15, and 13 classes. 
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In Table 5 , a summary of the results (with the highest overall

ccuracy/sensitivity in the recognition of cardiac disorders) from

he current scientific literature together with the results obtained

n our work is presented. The summary is based on the same

atabase - MIT-BIH Arrhythmia, and the more objective subject-

riented validation scheme ( Afkhami et al., 2016; da S. Luz et al.,

016 ) and includes information about the applied ECG signal anal-

sis methods. 
. Discussion 

.1. Hypothesis 

The results obtained in all experiments confirmed the thesis:

he application of the proposed methodology will enable the auto-

atic, efficient, universal, low computational complexity and fast
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Algorithm 1: Evolutionary-neural system. 

Data: 

X – matrix with raw data; 

R – matrix with reference answers; 

s v m type ← 1 – defining the type of SV M on ν − SV C; 

kernel type ← 2 – defining the type of kernel function on RBF ; 

Result: 

B – vector of the form [ f p , g 1 , g 2 , c 1 , . . . , c 4001 ] , with 

associated values of the fitness function ( f p ); the determined 

optimal parameters of the SV M classifier, γ and ν; and the 

selected features; 

O L and O T – matrices with the classifier responses of the 

SV M; 

CF – confusion matrix with the classifier responses of the 

SV M; and 

E – vector with the calculated evaluation coefficients of the 

SV M; 

1 Perform one type of signal pre-processing based on X 

2 Perform one type of feature extraction 

3 Create training and test sets and reference matrices based 

on R 

4 Set genetic algorithm parameters (Table 2); 

GENETIC ALGORITHM : 

5 Create an initial population of individuals 

6 for i ← 1 to 20 (number of generations) do 

7 for j ← 1 to 50 (number of individuals) do 

8 Perform feature selection 

9 Save the value of the basic and optimized parameters 

of the SVM classifier. 

10 for c ← 1 to 10 (number of set combinations) do 

11 Create the model of the SV M classifier 

12 Determine the SV M classifier responses 

13 Determine the number of errors 

14 end 

15 Calculate the sum of the errors for the training and 

test sets 

16 Determine the value of the fitness function ( f f ) 

17 Save the related values B for the fitness function ( f f ), 

classifier parameters and selected features as well as 

the matrices with classifier responses: O L and O T 

18 end 

19 if f f == 0 then 

20 Lead out the “best” individual with the corresponding 

response matrices 

21 break 

22 else 

23 Perform the selection of individuals 

24 Apply the genetic operators: crossover and mutation 

25 Create a new population of individuals 

26 end 

27 end /* End of GA */ 

28 Lead out the “best” individual with the corresponding 

response matrices 

29 Create the confusion matrix CF 

30 Calculate the evaluation coefficients E for the SV M classifier 
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recognition of heart disorders based on ECG signal analysis and the

evolutionary-neural system. 

The confirmation of this statement is given by the obtained

results, summarized in Tables 3–5 and in Sections 4.11, 4.9 . The

presented results show that the recognition sensitivity of the 17

classes for the best evolutionary-neural system based on the SVM

classifier (rescaling + 512 samples) is SEN = 90 . 20 % ( ACC = 98.85%,

SPE = 99.39%). This result is higher than the average sensitivity
f the results presented in the current scientific literature, which

s 88.86% ( Table 5 ). The obtained result is one of the best in

he scientific literature, where the three best results are Acc/SEN

 98% ( Escalona-Moran, Soriano, Fischer, & Mirasso, 2015 ), 94%

 Huang et al., 2014 ) and 93% ( Lin & Yang, 2014; Llamedo & Mar-

inez, 2011 ) ( Table 5 ). It should be noted that the results obtained

n our work include the recognition of 17 classes (a recognition

ensitivity for 15 and 13 classes of 91% and 95%; Fig. 4 ). In con-

rast, the results presented in the scientific literature include the

ecognition of only 5 classes (for the subject-oriented validation

cheme ( da S. Luz et al., 2016 )). 

The obtained classification time for the ECG signal fragments,

 k = 0.0023 [s] , for the best evolutionary-neural system based on

he SVM classifier is also very important. 

.2. Machine learning algorithms 

Based on the results obtained in research and presented in

ables 3 and 4 , we find that the best classifier was the SVM classi-

er ( ERR sum 

= 98 errors and average = 106.5 errors; SEN = 90.20%

nd average = 89.35%); the other classifiers obtained worse results,

espectively: PNN ( ERR sum 

= 114 errors and average = 117.5 errors;

EN = 88.60% and average = 88.25%), RBFNN ( ERR sum 

= 115 errors

nd average = 117.0 errors; SEN = 88.50% and average = 88.30%)

nd kNN ( ERR sum 

= 117 errors and average = 125.5 errors; SEN =
8.30% and average = 87.45%). 

.3. Preprocessing with normalization 

Based on the results obtained in research, we find that the best

ignal normalization method was the rescaling method ( ERR sum 

=
8 errors and average = 116.63 errors; SEN = 90.20% and average

 88.34%); the other methods obtained lower results, respectively:

tandardization (average SEN lower by about 1.0% from rescal-

ng) and no normalization (average SEN lower by about 1.5% from

escaling). 

.4. Feature extraction 

Based on the results obtained in research and presented in

ables 3 and 4 , we find that the greatest efficiency for feature

xtraction was based on Hamming windows with widths of 512

amples ( ERR sum 

= 98 and average = 111.00 errors; SEN = 90.20%

nd average = 88.90%) and 1024 samples ( ERR sum 

= 115 and av-

rage = 122.25 errors; SEN = 88.50% and average = 87.78%); other

amming window widths obtained lower results, respectively: 256

amples (average SEN lower by about 1.5% from 512 samples), and

28 samples (average SEN lower by about 2.5% from 512 samples).

The obtained result indicates that the best result was achieved

nder one of the widest Hamming windows: 512 samples. This

idth corresponds to an analysis window with a duration of ap-

roximately 1.25 [s] (approximately 2 heart evolutions), assuming

hat one evolution of the heart corresponds to approximately 310

amples of the ECG signal. The obtained result confirms the valid-

ty of the research methodology based on the analysis of longer

10-s) fragments of the ECG signal because the results for the nar-

ower Hamming windows (256 samples) corresponding to a single

volution of the heart were characterized by lower recognition ef-

ciency for heart disorders. 

.5. Feature selection 

In research tested the effect of the applied genetic selection of

he features. The applied feature selection increased the recogni-

ion sensitivity of heart pathology due to the removal of redun-

ant or misleading information. Another positive effect of its uti-

ization was the reduction in the length of the input feature vector.
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his resulted in an increased effect of the knowledge generaliza-

ion achieved by the classifiers, reduced effect of over-fitting and

educed training, and classification times. The aim of the genetic

election of features was to eliminate the frequency components

orresponding to noise, measurement errors, network voltage com-

onents, baseline wandering, and redundant information. 

The confirmation of the presented findings is given by the ob-

ained results. From the results, it follows that the applied feature

election increased the recognition effectiveness of heart dysfunc-

ions (average SEN higher by about 1.0%) and decreased the sample

raining and classification times (about 2-fold). 

Based on the obtained results presented in Tables 3 and 4 , it

an be observed that the average number of accepted features is

 F = 49.24% . This means that the optimal results (highest sensi-

ivity) were obtained after rejecting about half of the features (the

requency components of the ECG signal power spectral density)

rom the input vector. 

.6. Cross-validation 

Based on the obtained results, it can be stated that higher

ensitivity (average SEN higher by about 2.0%) were achieved un-

er 10-fold cross-validation , than under a 4-fold cross-validation

ethod. 

The 4-fold cross-validation method is less computationally com-

lex, but based on the obtained results, the method achieves a

ower efficiency. Because fewer classifiers models were created

ased on this method and because the created models learned on

ewer elements of the training set, the models produced a worse

t to the recognition classes. 

.7. Parameter optimization 

Based on the obtained results, it can be stated that higher sen-

itivity (average SEN higher by about 1.5%) were obtained under

he genetic algorithm , than under the grid search method. 

The obtained result is as expected. By using a genetic algorithm,

t was possible to search a much larger solution space compared to

he grid search method. Another advantage was the much higher

esolution (smaller step size) for the tested parameters. These two

eatures resulted in the substantially better GA score. 

.8. Dysfunctions/classes 

One of the biggest difficulties in analyzing the ECG signal ob-

erved during this research is the variability of the morphological

nd dynamic features within a given class (disorder) for different

atients. This problem was presented for the normal sinus rhythm

lass for 23 different patients in Fig. 2 A for ECG signals after the

FT was applied. The variability of the signals within one class for

ifferent patients is very large and comparable to the variability of

he shapes of the ECG signals for different classes, as presented in

ig. 2 B. 

In Fig. 3 , the recognition efficiency for each class is presented

ith the best classifier - SVM . Based on this, we can observe a

igh recognition efficiency for practically all classes: SEN over 65% .

he worst results were obtained for supraventricular tachyarrhyth-

ia ( SEN over 46%) and fusion of ventricular and normal beat ( SEN

ver 55%). 

Based on the obtained results presented in Fig. 3 , we removed

ysfunctions with the smallest value of the SEN coefficient. As a

esult, two other recognition cases were considered: 15 classes

after removing the supraventricular tachyarrhythmia and fusion of

entricular and normal beat classes) and 13 classes (after removing

he premature ventricular contraction , supraventricular tachyarrhyth-

ia , ventricular tachycardia and fusion of ventricular and normal beat
lasses). The best classifier, SVM , obtained the following sensitivity

or heart dysfunction recognition for 17, 15 and 13 classes , respec-

ively: SEN = 90.20% , 91.28% , and 94.60% and κ = 88.49% , 89.69% ,

nd 93.49% . 

.9. Times 

.9.1. Parameter optimization 

Research confirms the superiority of the genetic algorithm over

rid search. GA achieved better results in a comparable amount of

ime. It should also be noted that the training and classification

imes were significantly shortened (about 2-fold) when was ap-

lying the feature selection . 

.9.2. Classifiers 

Based on Table 4 , we can state that the training of the kNN

lassifier was the fastest and that the training of the RBFNN clas-

ifier was the slowest : average T t [ s ] = 0.1285 and 95.7335, respec-

ively. The classification of the ECG signal fragments by the SVM

lassifier was the fastest , and the classification by the kNN clas-

ifier was the slowest : average T c [ s ] = 0.0026 and 0.0691, respec-

ively. The optimization of the SVM and PNN classifiers was the

astest , and the optimization of the kNN classifier was the slow-

st : average T o [ h ] = 135 and 170, respectively. 

.9.3. Cross-validation 

Based on obtained results, we can state that, as expected,

raining, classification, and optimization lasted much longer (2.5

imes) under 10-fold cross-validation than under 4-fold cross-

alidation. 

.10. Enlarged database 

Based on obtained results, i.a. Table 4 , we can state that, enlarg-

ng the database from 744 to 10 0 0 ECG fragments and increasing

he number of patients from 29 to 45 practically did not affect

n the effectiveness of the classification of cardiac disorders and

ll the dependencies between the tested methods were retained.

or the best case (classifier: SVM + normalization type: rescaling +

amming window width: 512 samples) obtained a slightly higher

alue of sensitivity ( SEN ) for the enlarged database, respectively,

or 10 0 0 and 744 fragments of the ECG signal: ERR sum 

= 98 and

3 errors; SEN = 90.20% and 90.19% . 

.11. Computational complexity 

The proposed approach has the huge advantage of lower com-

utational complexity . By analyzing longer (10-s) fragments of

CG signals, the number of classifications has been reduced ( an

verage of 13 times less classification , assuming that heart rate

s 80 beats per minute), and eliminating the need for detection

nd segmentation of QRS complexes. Computational complexity

re only high on training and optimization stages, while the classi-

cation stage is much less computationally complex than the clas-

ical approach (based on QRS complex detection). This opens the

ossibility to use the solution in practice, in mobile devices (less

PU and memory load, lower power consumption, longer battery

ife). 

. Conclusion 

The aim of the conducted research was to develop a new

ethodology that enables the efficient recognition of myocardium

ysfunctions (17 classes: normal sinus rhythm + pacemaker

hythm + 15 heart disorders), based on analysis of 10-s frag-

ents of ECG signals and an evolutionary-neural system. In this
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research, 10 0 0 fragments of ECG signals were analyzed from the

MIH-BIH Arrhythmia database for one lead, MLII, from 45 patients.

Four experiments were conducted, during which many methods

were applied and tested concerning the following: signal pre-

processing and normalization, feature extraction and selection,

cross-validation, machine learning algorithms (SVM, kNN, PNN, and

RBFNN classifiers), parameter optimization and enlarged database. 

The best evolutionary-neural system based on the SVM classi-

fier obtained a recognition sensitivity of 17 myocardium dysfunc-

tions at a level of 90.20% (98 errors per 10 0 0 classifications, accu-

racy = 98.85%, specificity = 99.39%, time of classification for one

sample = 0.0023 [s]). Against the background of the current sci-

entific literature, these results represent some of the best results

obtained. 

The obtained results fully confirm the validity of the conducted

research and prove that the aims ( Section 1 ) was realized - we de-

veloped a novel methodology for the automatic, efficient ( Table 5 ),

universal ( Table 1 ), low computational complexity ( Section 4.11 )

and fast ( Section 4.9 ) recognition of heart pathologies. 

To the advantages of the proposed solution we can include: 1)

recognition of 17 classes, 2) high efficiency / sensitivity, 3) possi-

bility to implement on mobile devices: lower computational com-

plexity (an average of 13 times less classifications) and only one

lead, 4) not applying the QRS complex detection and segmenta-

tion of the ECG signal, and 5) not applying signal filtering. To the

disadvantages we can include: 1) not applying completely subject-

oriented validation scheme (inter-patient paradigm), due to insuf-

ficient number of appropriate ECG signals in MIT-BIH database,

2) no possibility of analyzing ECG signals fragments that contain

more than one class type (except of normal sinus rhythm). 

This research is worth continuing in order to: increase the

recognition sensitivity for heart disorders and overcome the limita-

tions. Further research will focus on: 1) testing the feature extrac-

tion based on wavelet analysis, 2) testing ensembles of classifiers

and deep learning methods, 3) analyzing fragments of ECG signals

from more leads (2–12), 4) testing more types of windows (e.g.

rectangular, Kaiser, Gaussian), 5) analyzing ECG signals fragments

that contain more than one class type, 6) collecting more number

of appropriate ECG signal fragments. 

Future research will also include the construction of a proto-

type of mobile device for recording ECG signals with implemented

algorithms for diagnosing heart disorders. This will allow to use

the proposed solution in clinical trials. The ultimate aim of the re-

search will be to design a tele-medicine system for patient self-

control and prevention applications. 
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